
HACK: Homomorphic Acceleration via Compression of the
Key-Value Cache for Disaggregated LLM Inference
Zeyu Zhang

University of Virginia
Charlottesville, Virginia, USA

qxc4fh@virginia.edu

Haiying Shen
University of Virginia

Charlottesville, Virginia, USA
hs6ms@virginia.edu

Shay Vargaftik
VMware Research

Palo Alto, California, USA
vargaftik@gmail.com

Ran Ben Basat
University College London

London, England, UK
r.benbasat@cs.ucl.ac.uk

Michael Mitzenmacher
Harvard University

Boston, Massachusetts, USA
michaelm@eecs.harvard.edu

Minlan Yu
Harvard University

Boston, Massachusetts, USA
minlanyu@g.harvard.edu

Abstract
Disaggregated Large Language Model (LLM) inference decouples
the compute-intensive prefill stage from the memory-intensive de-
code stage, allowing low-end, compute-focused GPUs for prefill and
high-end, memory-rich GPUs for decode, which reduces cost while
maintaining high throughput. However, transmitting Key-Value
(KV) data between the two stages can be a bottleneck, especially for
long prompts. Additionally, the computational overhead in the two
stages is key for optimizing Job Completion Time (JCT), and KV
data size can become prohibitive for long prompts and sequences.
Existing KV quantization methods can alleviate transmission and
memory bottlenecks, but they introduce significant dequantization
overhead, exacerbating the computation time.

We propose Homomorphic Acceleration via Compression of
the KV cache (HACK) for disaggregated LLM inference. HACK
eliminates the heavy KV dequantization and directly computes on
quantized KV data to approximate and reduce the cost of expensive
matrix multiplication. Extensive trace-driven experiments show
that HACK reduces JCT by up to 70.9% compared to disaggregated
LLM inference baseline and by up to 52.3% compared to state-of-
the-art KV quantization methods.

CCS Concepts
• Computing methodologies→ Natural language generation;
• Networks → Application layer protocols; • Information
systems → Information systems applications.

Keywords
Large Language Models, Disaggregation, KV Cache, Compression
ACM Reference Format:
Zeyu Zhang, Haiying Shen, Shay Vargaftik, Ran Ben Basat, Michael Mitzen-
macher, and Minlan Yu. 2025. HACK: Homomorphic Acceleration via Com-
pression of the Key-Value Cache for Disaggregated LLM Inference. In ACM
SIGCOMM 2025 Conference (SIGCOMM ’25), September 8–11, 2025, Coim-
bra, Portugal. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3718958.3750481

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGCOMM ’25, Coimbra, Portugal
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1524-2/2025/09
https://doi.org/10.1145/3718958.3750481

1 Introduction
Disaggregated LLM inference improves cost-efficiency by assign-
ing low-end GPUs (e.g., NVIDIA A10G, V100, T4, and L4) to the
prefill stage and high-end GPUs (e.g., A100 and H100) to the de-
code stage [8, 16, 17, 19, 23, 24, 26, 27]. However, Key-Value (KV)
transmission between the two stages can be a bottleneck, since
low-end GPU instances often lack high-speed networking for cost
savings. For example, AWS’s A10G, V100, T4, and L4 instances
cost roughly 10–20 times less than A100 instances—which typi-
cally offer 400 Gbps bandwidth—but their networks are limited to
10–50 Gbps or lower [10]. Similarly, Tencent Cloud’s A100 instances
are configured with only 5–50 Gbps bandwidth to cut costs [12].
Computation can also become a bottleneck due to the attention
mechanism. Moreover, during the decode stage, GPU memory is
constrained by the large volume of cached KV data [23, 27].

KV quantization (e.g., CacheGen [22] and KVQuant [15]) can
alleviate transmission and memory bottlenecks. They quantize KV
data after each iteration before storing it in the cache and then
retrieve and dequantize all tokens’ KV data in the next decode it-
eration. However, they introduce significant KV dequantization
overhead and cannot reduce computation time.

Ideally, arithmetic operations should be executable directly on
quantized KV data, eliminating dequantization and accelerating
computation through smaller data elements. A similar idea has
been explored for gradient aggregation [21], but this was limited
to addition operations and unsuitable for the matrix multiplica-
tions required in the attention mechanism. To this end, we pro-
pose Homomorphic Acceleration via Compression of the KV cache
(HACK) for disaggregated LLM inference. HACK addresses the KV
transmission bottleneck by enabling computation on quantized
data (INT2/8) while maintaining comparable inference accuracy
and reducing computation and memory constraints. HACK is com-
patible with any quantization method that dequantizes data by
linear transformation (e.g., MXFP4/8 [25]). We open-sourced the
code of HACK [2]. This work does not raise any ethical issues.

2 Motivation
We show the networking, computation, and memory bottlenecks
and demonstrate the limitations of current KV quantization meth-
ods in addressing these issues. The default experiment settings are
detailed in §4.

In our measurements with the default settings, KV transmission
can contribute up to 42.2% of JCT. Prefill and decode times can

1245

https://orcid.org/0009-0005-7853-6854
https://orcid.org/0000-0002-7548-6223
https://orcid.org/0000-0002-0982-7894
https://orcid.org/0000-0003-0196-9190
https://orcid.org/0000-0001-5430-5457
https://orcid.org/0000-0002-2381-0212
https://doi.org/10.1145/3718958.3750481
https://doi.org/10.1145/3718958.3750481
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3718958.3750481
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3718958.3750481&domain=pdf&date_stamp=2025-08-27

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Zhang et al.

INT8

Q The same②,
③, and④ as
in prefill.K

V

Q

K

V

Q’

K’

V’

S

P
P’

O

First Token

INT2
K’

INT2
V’

Q’

K’

V’Fi
rs
tT
ok
en

INT8

INT2

INT2

N
ex
tt
ok
en

①

Pr
om

pt
to
ke
ns INT2

INT2

②

②

②

③
④

②

③ ⑤

INT8

CPU Memory⑥

Transmit the
first token,
quantized K’,
quantized V’,
minimum
value m, and
scale value s.

⑦

②

②

②
⑨

Self-Attn.
Self-Attn.Merge in

token dim.
INT2
K’

INT2
V’ GPU KV Cache⑧

①

①

⑤

①Generate Q, K, and V.② Hom. quantization. ④ softmax.③ Hom. computation. ⑤Operations to output a token.

⑥ Store K’ and V’ in CPU memory if necessary. ⑦Communication. ⑧ Store K’ and V’ in GPU KV cache. ⑨Merge the new token’s K’ and V’
with all prior tokens’, respectively.

x
x x

No KV dequantization.x
Decode instancePrefill instance

Figure 1: Overview of HACK for disaggregated LLM inference.

reach up to 45.6% and 84.3% of JCT. GPU memory usage can reach
up to 93.7%. KV memory access can reach up to 33.1% of JCT.

Although KV quantization (e.g., CacheGen and KVQuant) can
reduce KV transmission overhead, memory usage, and KV memory
access time, they introduce substantial dequantization costs per
decode iteration. In our measurements, CacheGen and KVQuant
introduce additional KV dequantization overhead up to 37.9% of
JCT, which can be even higher for long sequences. In addition,
they cannot reduce computation time. This highlights the need
for a quantization method that simultaneously lowers communica-
tion and memory overhead, avoids the cost of dequantization, and
reduces computation time.
3 Design
HACK avoids KV dequantization and reduces attention compu-
tation time via homomorphic matrix multiplication on quantized
data. Fig. 1 illustrates the workflow. The most critical step is Step
2 , which quantizes KV to INT2 and query Q to INT8 using ho-
momorphic quantization, followed by Step 3 , which performs
homomorphic computation on the quantized data. HACK consists
of the following components.
Homomorphic quantization for matrix multiplication. Atten-
tion primarily involves matrix multiplications. For anymatrix multi-
plication𝐶 = 𝐴𝐵, HACK quantizes𝐴 and 𝐵 to obtain𝐴′ and 𝐵′ and
then finds 𝐶′ = 𝐴′𝐵′ to obtain a quantized output 𝐶′. 𝐶′ is subse-
quently turned into an approximation of𝐶 with a minimal overhead.
We use an asymmetric 2-bit/8-bit stochastic quantization [20] when
performing homomorphic quantization to reduce quantization er-
ror. It identifies the minimum (𝑚𝑖𝑛𝑖) and maximum (𝑚𝑎𝑥𝑖) values
of the matrix elements and computes the 𝑠𝑐𝑎𝑙𝑒 = 𝑚𝑎𝑥𝑖−𝑚𝑖𝑛𝑖

22−1 . Each
original value 𝑥 is quantized to an integer 𝑥 ′ = 𝑟𝑜𝑢𝑛𝑑 (𝑥−𝑚𝑖𝑛𝑖

𝑠𝑐𝑎𝑙𝑒
).

The stochastic rounding 𝑟𝑜𝑢𝑛𝑑 (∗) rounds ∗ to ⌊∗⌋ with probability
(⌈∗⌉ − ∗)/⌈∗⌉ − ⌊∗⌋) and to ⌈∗⌉ otherwise. We explain how to esti-
mate 𝐶 given 𝐶′. Let 𝑎𝑖𝑧 represent the element in the 𝑖-th row and
𝑧-th column of 𝐴, and 𝑏𝑧 𝑗 represent the element in the 𝑧-th row
and 𝑗-th column of 𝐵. The matrix multiplication 𝐶 = 𝐴𝐵 can then
be expressed as 𝑐𝑖 𝑗 =

∑
𝑧 𝑎𝑖𝑧𝑏𝑧 𝑗 ,∀𝑖, 𝑗 . Let𝑚𝑎𝑖 and 𝑠𝑎𝑖 denote the

minimum and scale values of 𝑎𝑖𝑧 . Since 𝑎′𝑖𝑧 = 𝑟𝑜𝑢𝑛𝑑 (𝑎𝑖𝑧−𝑚𝑎𝑖

𝑠𝑎𝑖
)

and 𝑏′
𝑧 𝑗

= 𝑟𝑜𝑢𝑛𝑑 (
𝑏𝑧 𝑗−𝑚𝑏𝑗

𝑠𝑏𝑗
), we have 𝑎𝑖𝑧 ≈ 𝑠𝑎𝑖𝑞𝑎𝑖𝑧 + 𝑚𝑎𝑖 and

𝑏𝑧 𝑗 ≈ 𝑠𝑏 𝑗
𝑞𝑏𝑧 𝑗 +𝑚𝑏 𝑗

. Thus, (𝐴𝐵)𝑖 𝑗 can be extended to:∑︁
𝑧

𝑎𝑖𝑧𝑏𝑧 𝑗 ≈ 𝑠𝑎𝑖 𝑠𝑏 𝑗

∑︁
𝑧

𝑎′𝑖𝑧𝑏
′
𝑧 𝑗 +𝑚𝑏 𝑗

𝑠𝑎𝑖

∑︁
𝑧

𝑎′𝑖𝑧+

𝑚𝑎𝑖 𝑠𝑏 𝑗

∑︁
𝑧

𝑏′𝑧 𝑗 + 𝑍𝑚𝑎𝑖𝑚𝑏 𝑗
,

(1)

where {∑𝑧 𝑎
′
𝑖𝑧
𝑏′
𝑧 𝑗
,∀𝑖, 𝑗} is the quantized matrix multiplication that

can be accelerated by INT8 computation. The other terms in Eq. (1)
allow computating an approximation of

∑
𝑧 𝑎𝑖𝑧𝑏𝑧 𝑗 (𝐶) from

∑
𝑧 𝑎

′
𝑖𝑧
𝑏′
𝑧 𝑗

(𝐶′). Eq. (1) provides homomorphic computation for multiplication.
Summation elimination.We store the sum

∑
𝑧 𝑏

′
𝑧 𝑗

in Eq. (1) for
𝐾 and𝑉 during decode and reuse them every iteration to avoid the
recomputation cost for the decode stage. This only needs a little
extra memory, up to ∼2.7% of the GPU memory capacity.
Requantization elimination for the last block of 𝑉 . Quanti-
zation is applied to groups of elements. For the value matrix 𝑉 ,
each group spans the sequence dimension. During decode, if the
last block of 𝑉 has fewer tokens than the group size, quantization
metadata (e.g., the minimum) is undefined, requiring recomputation
and requantization at each iteration until the group is full. To avoid
this, we store the original FP16 values of the last group𝑉 in a cache,
which consumes at most 0.51% of the GPU memory capacity.

4 Evaluation
Amazon EC2 provides a wide selection of GPU instances [9]. We
use two AWS p4de.24xlarge (8 A100 and 400 Gbps for each) for de-
code [23, 27]; ten g5.12xlarge (4 A10G and 40 Gbps for each), sixteen
p3.8xlarge (4 V100 and 10 Gbps for each), sixteen g4dn.12xlarge
(4 T4 and 50 Gbps for each), ten g6.12xlarge (4 L4 and 40 Gbps
for each), or two p4de.24xlarge for prefill to avoid underutilizing
decode instances [23]. We evaluate HACK using Mistral-v0.3 7B [7],
Phi-3 14B [6], Yi 34B [1], Llama-3.1 70B [5], and Falcon 180B [3]
with their recommended and empirically validated Tensor Paral-
lelism (TP) and Pipeline Parallelism (PP) sizes [23, 27] across various
datasets (IMDb [18], HumanEval [11], GSM8K [4], arXiv [13], and
Cocktail [14]).

When achieving 99% of the accuracy of the disaggregated base-
line without quantization, HACK provides up to 86% KV size reduc-
tion, up to 70.9% JCT reduction over the disaggregated baseline, and
up to 52.3% JCT reduction over quantization methods (CacheGen
and KVQuant).

Acknowledgments
This work was supported in part by U.S. NSF grants NSF-2421782,
NSF-2350425, NSF-2319988, NSF-2206522, Microsoft Research Fac-
ulty Fellowship 8300751, Amazon research award, AWS Cloud
Credit for Research, and the Commonwealth Cyber Initiative (CCI),
an investment in the advancement of cyber research, innovation
and workforce development. For more information about CCI, visit
cyberinitiative.org. This work was also supported in part by ACE,
one of the seven centers in JUMP 2.0, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA.

1246

HACK: Homomorphic Acceleration via Compression of the Key-Value Cache for Disaggregated LLM Inference SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

References
[1] 2025. 01-ai Model Yi. https://huggingface.co/01-ai/Yi-34B-200K.
[2] 2025. The Code of HACK. https://github.com/pcl-projects/HACK.
[3] 2025. Falcon-180B. https://huggingface.co/tiiuae/falcon-180B.
[4] 2025. GSM8K. https://huggingface.co/datasets/openai/gsm8k.
[5] 2025. Meta Llama-3.1. https://llama.meta.com/.
[6] 2025. Microsoft Phi-3. https://huggingface.co/microsoft/Phi-3-medium-128k-

instruct.
[7] 2025. Mistral-v0.3. https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3.
[8] 2025. NVIDIA Dynamo. https://developer.nvidia.com/blog/introducing-

nvidia-dynamo-a-low-latency-distributed-inference-framework-for-scaling-
reasoning-ai-models/.

[9] Inc. Amazon Web Services. 2025. Amazon EC2 Instance Types. https://
aws.amazon.com/ec2/instance-types/.

[10] Inc. Amazon Web Services. 2025. Recommended AWS GPU Instances. https:
//docs.aws.amazon.com/dlami/latest/devguide/gpu.html.

[11] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,
Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Eval-
uating Large Language Models Trained on Code. arXiv:2107.03374 [cs.LG]
https://arxiv.org/abs/2107.03374

[12] Tencent Cloud. 2025. Tencent Cloud - A100 Instances. https://
www.tencentcloud.com/document/product/560/19701#GT4.

[13] Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim,
Walter Chang, and Nazli Goharian. 2018. A Discourse-Aware Attention Model
for Abstractive Summarization of Long Documents. arXiv:1804.05685 [cs.CL]
https://arxiv.org/abs/1804.05685

[14] Sunhao Dai, Weihao Liu, Yuqi Zhou, Liang Pang, Rongju Ruan, Gang Wang,
Zhenhua Dong, Jun Xu, and Ji-Rong Wen. 2024. Cocktail: A Comprehensive
Information Retrieval Benchmark with LLM-Generated Documents Integration.
arXiv:2405.16546 [cs.IR] https://arxiv.org/abs/2405.16546

[15] Coleman Richard Charles Hooper, Sehoon Kim, Hiva Mohammadzadeh,
Michael W. Mahoney, Sophia Shao, Kurt Keutzer, and Amir Gholami. 2024.
KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache
Quantization. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems. https://openreview.net/forum?id=0LXotew9Du

[16] Cunchen Hu, Heyang Huang, Junhao Hu, Jiang Xu, Xusheng Chen, Tao Xie,
Chenxi Wang, Sa Wang, Yungang Bao, Ninghui Sun, and Yizhou Shan. 2024.
MemServe: Context Caching for Disaggregated LLM Servingwith ElasticMemory
Pool. arXiv:2406.17565 [cs.DC] https://arxiv.org/abs/2406.17565

[17] Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng Chen, Jiang Xu, Shuang
Chen, Hao Feng, Chenxi Wang, Sa Wang, Yungang Bao, Ninghui Sun, and Yizhou
Shan. 2024. Inference without Interference: Disaggregate LLM Inference for
Mixed Downstream Workloads. arXiv:2401.11181 [cs.DC] https://arxiv.org/abs/
2401.11181

[18] IMDb. 2020. Genre Classification Dataset IMDb. https://www.kaggle.com/
datasets/hijest/genre-classification-dataset-imdb.

[19] Philip Kiely. 2024. NVIDIA A10 vs A10G for ML model inference. https://
www.baseten.co/blog/nvidia-a10-vs-a10g-for-ml-model-inference/.

[20] John R. Klauder. 1983. Stochastic Quantization. In Recent Developments in High-
Energy Physics, H. Mitter and C. B. Lang (Eds.). Springer Vienna, Vienna, 251–281.

[21] Minghao Li, Ran Ben Basat, Shay Vargaftik, ChonLam Lao, Kevin Xu, Michael
Mitzenmacher, and Minlan Yu. 2024. THC: Accelerating Distributed Deep Learn-
ing Using Tensor Homomorphic Compression. In 21st USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 24). USENIX Association, Santa
Clara, CA, 1191–1211. https://www.usenix.org/conference/nsdi24/presentation/
li-minghao

[22] Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang, Qizheng
Zhang, Kuntai Du, Jiayi Yao, Shan Lu, Ganesh Ananthanarayanan, Michael
Maire, Henry Hoffmann, Ari Holtzman, and Junchen Jiang. 2024. CacheGen:
KV Cache Compression and Streaming for Fast Large Language Model Serving.
In Proceedings of the ACM SIGCOMM 2024 Conference (Sydney, NSW, Australia)
(ACM SIGCOMM ’24). Association for Computing Machinery, New York, NY,
USA, 38–56. doi:10.1145/3651890.3672274

[23] Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo Goiri,
Saeed Maleki, and Ricardo Bianchini. 2024. Splitwise: Efficient Generative
LLM Inference Using Phase Splitting. In 2024 ACM/IEEE 51st Annual Inter-
national Symposium on Computer Architecture (ISCA). 118–132. doi:10.1109/

ISCA59077.2024.00019
[24] Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang, Yongwei Wu, Weimin

Zheng, and Xinran Xu. 2024. Mooncake: A KVCache-centric Disaggregated
Architecture for LLM Serving. arXiv:2407.00079 [cs.DC] https://arxiv.org/abs/
2407.00079

[25] Bita Darvish Rouhani, Ritchie Zhao, Ankit More, Mathew Hall, Alireza Kho-
damoradi, Summer Deng, Dhruv Choudhary, Marius Cornea, Eric Dellinger,
Kristof Denolf, Stosic Dusan, Venmugil Elango, Maximilian Golub, Alexander
Heinecke, Phil James-Roxby, Dharmesh Jani, Gaurav Kolhe, Martin Langhammer,
Ada Li, Levi Melnick, Maral Mesmakhosroshahi, Andres Rodriguez, Michael
Schulte, Rasoul Shafipour, Lei Shao, Michael Siu, Pradeep Dubey, Paulius Micike-
vicius, Maxim Naumov, Colin Verrilli, RalphWittig, Doug Burger, and Eric Chung.
2023. Microscaling Data Formats for Deep Learning. arXiv:2310.10537 [cs.LG]
https://arxiv.org/abs/2310.10537

[26] Foteini Strati, Sara Mcallister, Amar Phanishayee, Jakub Tarnawski, and Ana
Klimovic. 2024. DéjàVu: KV-cache Streaming for Fast, Fault-tolerant Gen-
erative LLM Serving. In Proceedings of the 41st International Conference on
Machine Learning (Proceedings of Machine Learning Research, Vol. 235), Rus-
lan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver,
Jonathan Scarlett, and Felix Berkenkamp (Eds.). PMLR, 46745–46771. https:
//proceedings.mlr.press/v235/strati24a.html

[27] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin
Jin, and Hao Zhang. 2024. DistServe: Disaggregating Prefill and Decoding for
Goodput-optimized Large Language Model Serving. In 18th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 24). USENIX Associa-
tion, Santa Clara, CA, 193–210. https://www.usenix.org/conference/osdi24/
presentation/zhong-yinmin

1247

https://huggingface.co/01-ai/Yi-34B-200K
https://github.com/pcl-projects/HACK
https://huggingface.co/tiiuae/falcon-180B
https://huggingface.co/datasets/openai/gsm8k
https://llama.meta.com/
https://huggingface.co/microsoft/Phi-3-medium-128k-instruct
https://huggingface.co/microsoft/Phi-3-medium-128k-instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://developer.nvidia.com/blog/introducing-nvidia-dynamo-a-low-latency-distributed-inference-framework-for-scaling-reasoning-ai-models/
https://developer.nvidia.com/blog/introducing-nvidia-dynamo-a-low-latency-distributed-inference-framework-for-scaling-reasoning-ai-models/
https://developer.nvidia.com/blog/introducing-nvidia-dynamo-a-low-latency-distributed-inference-framework-for-scaling-reasoning-ai-models/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://docs.aws.amazon.com/dlami/latest/devguide/gpu.html
https://docs.aws.amazon.com/dlami/latest/devguide/gpu.html
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://www.tencentcloud.com/document/product/560/19701##GT4
https://www.tencentcloud.com/document/product/560/19701##GT4
https://arxiv.org/abs/1804.05685
https://arxiv.org/abs/1804.05685
https://arxiv.org/abs/2405.16546
https://arxiv.org/abs/2405.16546
https://openreview.net/forum?id=0LXotew9Du
https://arxiv.org/abs/2406.17565
https://arxiv.org/abs/2406.17565
https://arxiv.org/abs/2401.11181
https://arxiv.org/abs/2401.11181
https://arxiv.org/abs/2401.11181
https://www.kaggle.com/datasets/hijest/genre-classification-dataset-imdb
https://www.kaggle.com/datasets/hijest/genre-classification-dataset-imdb
https://www.baseten.co/blog/nvidia-a10-vs-a10g-for-ml-model-inference/
https://www.baseten.co/blog/nvidia-a10-vs-a10g-for-ml-model-inference/
https://www.usenix.org/conference/nsdi24/presentation/li-minghao
https://www.usenix.org/conference/nsdi24/presentation/li-minghao
https://doi.org/10.1145/3651890.3672274
https://doi.org/10.1109/ISCA59077.2024.00019
https://doi.org/10.1109/ISCA59077.2024.00019
https://arxiv.org/abs/2407.00079
https://arxiv.org/abs/2407.00079
https://arxiv.org/abs/2407.00079
https://arxiv.org/abs/2310.10537
https://arxiv.org/abs/2310.10537
https://proceedings.mlr.press/v235/strati24a.html
https://proceedings.mlr.press/v235/strati24a.html
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin

	Abstract
	1 Introduction
	2 Motivation
	3 Design
	4 Evaluation
	Acknowledgments
	References

